A Survey of Mobility Models for Ad Hoc Network Research

Hafeth Hourani

hafeth.hourani@nokia.com

/Title/ 03/01/04 hafeth.hourani@nokia.com

T-79.300 Postgraduate Course in Theoretical Computer Science

Outline

- Overview
- Entity Mobility Models
- Group Mobility Models
- Mobility Models and Performance Evaluation
- Conclusions

Outline

Overview

- Entity Mobility Models
- Group Mobility Models
- Mobility Models and Performance Evaluation
- Conclusions

The Goal

The *Performance Evaluation* of any particular Ad Hoc network protocol should be tested under:

- Sensible transmission range
- Limited buffer space for the messages
- Realistic data traffic model
- Realistic Mobility Model
- The target is to show how does the performance evaluation of a particular protocol changes drastically as the selected Mobility Model changes

Traces vs. Synthetic Models

- Mobility models are used when simulating a certain Ad Hoc network protocol
- There are two types of mobility models used in Ad Hoc network simulations
 - Traces Models
 - Those models that are observed in the real life systems
 - They provide accurate information
 - Synthetic Models
 - Useful when simulating the new network environments (such as Ad Hoc)
 - The synthetic models attempts to represent the MN behavior
- In this presentation, only the Synthetic Models are considered

Entity vs. Group Mobility Models

- Entity
 - Multiple MNs whose actions are completely independent
- Group
 - Multiple MNs move together (e.g., group of soldiers)
 - Group mobility has a cooperative characteristics

Outline

- Overview
- Entity Mobility Models
- Group Mobility Models
- Mobility Models and Performance
 Evaluation
- Conclusions

Random Walk

- Many entities move in extremely unpredictable ways . . .
- The MN moves from its current location to a new location by
 - Randomly chosen direction \in [0, 2 π]
 - Randomly chosen speed ∈ [speed_min, speed_max]
- Each movement occurs in either a
 - Constant time interval, or
 - Constant distance to travel
- This model is widely used, and sometimes referred to as Brownian Motion (when small distance and times are used)
- Random Walk is a memoryless model
 - It does not keep any knowledge about its past speed and location
- This model generates unrealistic movements
 - Sudden movements and sharp turns

Random Walk: constant travel time

- The movement occurs in a constant time interval
- The MN is allowed to travel 60 sec before changing its direction and speed

Random Walk: constant travel distance

- The movement occurs in a constant distance
- The MN must change its speed and direction every 10 steps

Random Waypoint

- Similar to the Random Walk model, but with a pause times between changes in direction and/or speed.
- The speed in this model is uniformly distributed ∈ [min_speed, max_speed]
- The Random Waypoint models gets to the Random Walk model if
 - The pause time is zero
 - The speed is chosen from [speed_min, speed_max] range without being uniformly distributed
- This model is widely used
- Compared to the Random Walk, the Random Waypoint generates more realistic movements.
- Once concern with this model is the straight movement pattern created by the MN.

Random Waypoint Example

The speed is uniformly chosen between 0 and 10 m/s

Random Waypoint: "speed" vs. "pause time"

 There is a complex relationship between the speed and the pause time in this model.

Random Direction Model

- Random Direction mobility model was created to overcome the neighbors "density waves"
- Density Waves happens due to MN clustering in the center of simulation area
 - This happens in Random Walk and Random Waypoint models
- In this model, the MN chooses a random direction in which to travel
- When the simulation area boundary is reached, the node pauses for a time and then selects another direction to go
- The average hop count for data packets is higher in this model than other models
 - Since the MN travel to, and usually pause at the border of the simulation area
- Unrealistic model, because it is unlikely that people would spread themselves evenly through an area

Random Direction Model: Example

A Boundless Simulation Area Model

- This model handles the simulation area differently . . .
- In this model, there is a relationship between the previous location and velocity with its current direction and velocity
- The velocity vector $\mathbf{v} = (\mathbf{v}, \mathbf{\theta})$ is used to describe an MN \mathbf{v} velocity as well as the direction
- Both the velocity and the position are updated according to:

$$v(t + \Delta t) = \min[\max(v(t) + \Delta v, 0), V_{\max}]$$

$$\theta(t + \Delta t) = \theta(t) + \Delta \theta$$

$$x(t + \Delta t) = x(t) + v(t)\cos\theta(t)$$

- $y(t + \Delta t) = y(t) + v(t)\sin\theta(t)$
- $V_{\rm max}$ is the maximum velocity defined in the simulation

Boundless Simulation Area: Example

 MNs that reach one side of the simulation area continue traveling and reappear on the opposite side of the area

Gauss-Markov Model

- This model was designed to adapt to different levels of randomness via one tuning parameter
- The value of seed and direction are calculated as the following:

$$s_{n} = \alpha s_{n-1} + (1-\alpha)\bar{s} + \sqrt{(1-\alpha^{2})}s_{x_{n-1}}$$

$$d_{n} = \alpha d_{n-1} + (1-\alpha)\bar{d} + \sqrt{(1-\alpha^{2})}d_{x_{n-1}}$$

- where α is the tuning parameter $\alpha \leq 1$)
- Gauss-Markov model can eliminate the sudden stops and sharp terns reconnoitered in the previous models

Gauss-Markov Model: Example

A Probabilistic Version of Random Walk

- This model utilizes a probability matrix to determine the position of a particular MN in the next time step.
- The probability matrix specifies a limited number of "next states" in each direction (x and y)
- In this model, the probability that of the MN to continue to follow the same direction is higher than purely random movements
 - This yields to more realistic behavior

Probabilistic Random Walk: Example

City Section Mobility Model

 In this model, the simulation area is a street network that represents a section of a city.

Outline

- Overview
- Entity Mobility Models
- Group Mobility Models
- Mobility Models and Performance
 Evaluation
- Conclusions

Column Mobility Model

- This model represents a set of MNs that move around a given line (or column), which is moving in forward direction
- In this model, the MNs are allowed to move randomly around its reference point via an entity model

Column Mobility Model: Example

Nomadic Mobility Model

- Nomadic Mobility Models represents groups of MNs that collectively move from one point to another.
- Within each group, individual MNs use entity mobility model to roam around the reference point
- Unlike the Column Mobility Model, the MNs share a common reference point

Pursue Mobility Models

 This model attempts to represent MNs tracking a particular object

Reference Point Group Mobility Model

- The RPGM represents the random motion of group of MNs as well as the random motion of each individual MN within the group.
- Group movements are based upon the path traveled by a logical center of the group

RPGM: Example

Outline

- Overview
- Entity Mobility Models
- Group Mobility Models
- Mobility Models and Performance Evaluation
- Conclusions

Simulation Goals

- To find out the effect of adopting a particular Mobility Model on the overall performance evaluation of a certain Ad Hoc Network Protocol
- The performance of Dynamic Source Routing (DSR) is studied with different Mobility Models:
 - Entity Models
 - Random Walk
 - Random Waypoint
 - Random Direction
 - Group Models
 - RPGM (inter-group communication)
 - RPGM (inter-group + intra-group communication)

Simulation Setup

- NS-2 was used to carry out the simulation
- 50 MNs were used
- MN transmission range = 100 m
- Dynamic Source Routing Protocol (DSR)
- Performance metrics:
 - Data packet delivery ration
 - End-to-end delay
 - Average hop-count
 - Protocol overhead

Results: Packet Delivery Ratio

Results: End-to-End Delay

Results: Average Hop Count

Results: Protocol Overhead

Outline

- Overview
- Entity Mobility Models
- Group Mobility Models
- Mobility Models and Performance
 Evaluation
- Conclusions

Conclusions

- The performance of an ad hoc network protocol can vary significantly due to the selected mobility model
- The performance should be evaluated with the mobility model that most closely matches the expected real-world scenarios
- For the DSR protocol, the Random Waypoint model has the highest data packet delivery ratio, the lowest end-to-end delay, and the lowest average hop count.

References

 Tracy Camp, et. al.: A Survey of Mobility Models for Ad Hoc Network Research

